– Ireland’s Centre For AI

Publications

Publications

Glucose Variability Analysis in Two Large-Scale and Real-World Data Sets of Open-Source Automated Insulin Delivery Systems

Year Published: 2023

CeADAR Researchers: Arsalan Shahid

Abstract

Background:

Open-source automated insulin delivery (OS-AID) systems combine commercially available insulin pumps and continuous glucose monitors with open-source algorithms to automate insulin dosing for people with insulin-requiring diabetes. Two data sets (OPEN and the OpenAPS Data Commons) contain anonymized OS-AID user data.

Methods:

We assessed glycemic variability (GV) outcomes in the OPEN data set and characterized it alongside a comparison to the n = 122 version of the OpenAPS Data Commons. Glucose data are analyzed using an unsupervised machine learning algorithm for clustering, and GV metrics are quantified using statistical tests for distribution comparison. Demographic data are also analyzed quantitatively.

Results:

The n = 75 OPEN data set contains 36 827 days worth of data. Mean TIR is 82.08% (TOR < 70: 3.66%; TOR > 180: 14.3%). LBGI (P < .05) differs by gender whereas HBGI distributions are similar (P > .05). GV metrics (except TOR < 70, LBGI) show a statistically significant difference (P < .05) between data sets.

Conclusions:

Both the OPEN and OpenAPS Data Commons data sets show TOR < 70, TIR, and TOR > 180 within recommended goals, adding additional evidence of real-world efficacy of OS-AID. Future research should evaluate in more detail potential data set differences and relationships between individual patterns of user behaviors and GV outcomes.