

OASIS: Open-Source Al-as-a-Service Framework for Federated, Efficient, and Drift-Robust Learning in the Continuum Edge-Cloud

Sebastián Andrés Cajas¹, Jaydeep Samanta¹, Andrés L. Suárez-Cetrulo¹, Romila Ghosh¹, Anastasios Giannopoulos², Alex Barceló³, and Ricardo Simón Carbajo¹

¹CeADAR (Ireland's Centre for Applied AI), University College Dublin, ²National and Kapodistrian University of Athens, ³Barcelona Supercomputing Center

PROBLEM & SOLUTION

- Fragmented Al tools across IoT-Edge-Cloud continuum
- Resource constraints on edge devices limit Al deployment
- Privacy concerns with centralized data processing
- Complex integration of ML lifecycle components

FRAMEWORK ARCHITECTURE

Processing Datasets Data Cleaning Data Normalization Models (Library) PyTorch Explainability Monitoring Architecture Federated Learning Processing Models (Library) Architecture Federated Learning Processing Models (Library) Federated Learning Federated Learning Inference

RESULTS & IMPACT

Method	Before	After	Reduction	Performance
Quantization	70.66 KB	21.68 KB	$3 \times$	Maintained
Distillation	70.36 KB	1.94 KB	36 ×	$2 \times \mathbf{faster}$

OASIS SOLUTION

- Open-source framework
- Library-agnostic
- Unified ML pipeline
- Edge-to-cloud support
- Deployment via
 Docker and Helm charts
- API-Driven

(2) Non-Discrimination & Fairness Model Explainability Monitoring (3) Transparency (1) Privacy & Data Governance Federated Learning (4) Robustness & Safety Monitoring

SUPPORTED LIBRARIES

REAL WORLD PERFORMANCE

• Deployed on x86 (AMD, Intel) & ARM64

(Nvidia Jetson, Orange Pi, Raspberry Pi,

- River
- BentoML
- MLFlow
- NannyML
- SHAP
- Flower
- PyTorch
- Tensorflow
- XGBoost
- Dataclay
- Transformers
- JupyterLab

KEY FEATURES & ARCHITECTURE

- Federated Learning: Privacy-preserving distributed training
- Model Compression: Quantization + distillation for edge devices
- **Drift Detection**: Real-time monitoring with NannyML

USE CASES

- Explainability: SHAP integration for interpretable Al
- MLOPs: Model management & performance tracking with MLFlow

API EXAMPLES

POST /train

POST /predict

POST /show_models

POST /detect_drift

POST /get_anomalies

POST /remove_model

POST /sync_model_repo
POST /launch MLFlow ui

API-driven anomaly detection for easy integration

ARM MacBooks)

 Supports, Smart farming robots, In-car entertainment streaming & energy management

CONCLUSIONS

AVAILABILITY

APPLICATIONS

- Healthcare systems
- Industrial IoT
- Smart cities
- 5G network management

DEPLOYMENT RESULTS

- CPU/RAM forecasting
- Network anomaly detection
- Edge device optimization

KEY ACHIEVEMENTS

- Unified ML framework
- 3x-36x model compression
- Privacy-preserving FL

FUTURE DIRECTIONS

- Advanced FL strategies
- Hybrid models
- Streaming support
- Domain-specific apps

Project page