DriftMoE: A Mixture of Experts Approach to Handle **Concept Drifts** iguel Aspis*, Sebastián A. Cajas Ordóñez*, Andrés L. Suárez-Cetrulo, Ricardo Simón Carbajo Equal contributions CeADAR (Ireland's Centre for AI), University College Dublin #### **PROBLEM & MOTIVATION** - Concept drift challenges - On-stationary streams - Resource constraints #### **Current Limitations** - False positive detection - Coarse adaptation - Simple voting schemes ### **SOLUTION OVERVIEW** #### **DriftMoE Framework:** - Online MoE architecture - Co-training approach - Neural router + experts #### **Two Variants:** - MoE-Data (multi-class) - MoE-Task (one-vs-rest) # **KEY FEATURES & ARCHITECTURE** - Multi-hot correctness - Mask training - Cooperative feedback - Symbiotic learning - Resource efficiency: - Cooperative feedback 12 vs 100+ experts #### **Technical Details:** - Hoeffding Tree experts - BCE loss optimization - Online mini-batches # $(x_1, y_1) \rightarrow (x_2, y_2) \rightarrow (x_2, y_3) \rightarrow ... \rightarrow concept drift$ Expert Correctness Mask Prequential update Expert pool \hat{y}_t Non-Stationary Data Streams #### **EXPERIMENTAL SETUP** | Category | Stream | Instances | Features | Classes | |-----------|---------------|-----------|----------|---------| | Synthetic | LED (Abrupt) | 1,000,000 | 24 | 10 | | | LED (Gradual) | 1,000,000 | 24 | 10 | | | SEA (Abrupt) | 1,000,000 | 3 | 2 | | | SEA (Gradual) | 1,000,000 | 3 | 2 | | | RBF_m | 1,000,000 | 10 | 5 | | | RBF_f | 1,000,000 | 10 | 5 | | Real | Airlines | 539,383 | 7 | 2 | | | Electricty | 45,312 | 8 | 2 | | | Cover Type | 581,012 | 54 | 7 | - 9 benchmarks (6+3 real) - Prequential evaluation - 5 state-of-art baseline - Accuracy, Kappa metrics #### **KEY FINDINGS** #### Summary: - ✓ Competitive accuracy - 8x fewer resources - Fast drift adaptation #### **Future Directions:** - Uncertainty routing - Dynamic allocation - Cost-sensitive losses **RESULTS & PERFORMANCE** Table 1: DriftMoE Performance Summary | Dataset | MoEData | MoETask | | |------------------|----------------------------------|----------------------------------|--| | Airlines | 70.33 ± 0.18 | 60.92 ± 0.01 | | | CovType | 81.28 ± 0.75 | 58.28 ± 0.31 | | | Electricity | 83.76 ± 0.45 | 68.73 ± 0.85 | | | LED_a | 73.77 ± 0.18 | 71.11 ± 0.54 | | | LED_g | $\textbf{73.11}\pm\textbf{0.11}$ | 70.82 ± 0.38 | | | RBF_f | 61.90 ± 0.20 | $\textbf{75.45}\pm\textbf{0.11}$ | | | RBF_m | 79.89 ± 0.48 | 88.65 ± 0.07 | | | SEA_a | 89.09 ± 0.05 | 88.04 ± 0.09 | | | SEA_g | 88.74 ± 0.05 | 87.76 ± 0.04 | | | | | | | ## **CONCLUSIONS** #### **Main Contributions:** - First streaming MoE for concept drift - Novel co-training framework - Multi-hot feedback - Competitive performance with fewer resources ## Impact: - Scalable online learning - Efficient drift handling # **USE CASES** #### Applications: - IoT data streams - Financial markets - Social media feeds • - Edge computing - Deployment: • Resource-constrained - environments - Real-time inference · Adaptive edge devices - Streaming analytics #### **FUNDING**