

DriftMoE: A Mixture of Experts Approach to Handle **Concept Drifts**

iguel Aspis*, Sebastián A. Cajas Ordóñez*, Andrés L. Suárez-Cetrulo, Ricardo Simón Carbajo

Equal contributions

CeADAR (Ireland's Centre for AI), University College Dublin

PROBLEM & MOTIVATION

- Concept drift challenges
- On-stationary streams
- Resource constraints

Current Limitations

- False positive detection
- Coarse adaptation
- Simple voting schemes

SOLUTION OVERVIEW

DriftMoE Framework:

- Online MoE architecture
- Co-training approach
- Neural router + experts

Two Variants:

- MoE-Data (multi-class)
- MoE-Task (one-vs-rest)

KEY FEATURES & ARCHITECTURE

- Multi-hot correctness
- Mask training
- Cooperative feedback
- Symbiotic learning
- Resource efficiency:
- Cooperative feedback 12 vs 100+ experts

Technical Details:

- Hoeffding Tree experts
- BCE loss optimization
- Online mini-batches

$(x_1, y_1) \rightarrow (x_2, y_2) \rightarrow (x_2, y_3) \rightarrow ... \rightarrow concept drift$ Expert Correctness Mask Prequential update Expert pool

 \hat{y}_t

Non-Stationary Data Streams

EXPERIMENTAL SETUP

Category	Stream	Instances	Features	Classes
Synthetic	LED (Abrupt)	1,000,000	24	10
	LED (Gradual)	1,000,000	24	10
	SEA (Abrupt)	1,000,000	3	2
	SEA (Gradual)	1,000,000	3	2
	RBF_m	1,000,000	10	5
	RBF_f	1,000,000	10	5
Real	Airlines	539,383	7	2
	Electricty	45,312	8	2
	Cover Type	581,012	54	7

- 9 benchmarks (6+3 real)
- Prequential evaluation
- 5 state-of-art baseline
- Accuracy, Kappa metrics

KEY FINDINGS

Summary:

- ✓ Competitive accuracy
- 8x fewer resources
- Fast drift adaptation

Future Directions:

- Uncertainty routing
- Dynamic allocation
- Cost-sensitive losses

RESULTS & PERFORMANCE

Table 1: DriftMoE Performance Summary

Dataset	MoEData	MoETask	
Airlines	70.33 ± 0.18	60.92 ± 0.01	
CovType	81.28 ± 0.75	58.28 ± 0.31	
Electricity	83.76 ± 0.45	68.73 ± 0.85	
LED_a	73.77 ± 0.18	71.11 ± 0.54	
LED_g	$\textbf{73.11}\pm\textbf{0.11}$	70.82 ± 0.38	
RBF_f	61.90 ± 0.20	$\textbf{75.45}\pm\textbf{0.11}$	
RBF_m	79.89 ± 0.48	88.65 ± 0.07	
SEA_a	89.09 ± 0.05	88.04 ± 0.09	
SEA_g	88.74 ± 0.05	87.76 ± 0.04	

CONCLUSIONS

Main Contributions:

- First streaming MoE for concept drift
- Novel co-training framework
- Multi-hot feedback
- Competitive performance with fewer resources

Impact:

- Scalable online learning
- Efficient drift handling

USE CASES

Applications:

- IoT data streams
- Financial markets
- Social media feeds •
- Edge computing

- Deployment: • Resource-constrained
- environments
 - Real-time inference · Adaptive edge devices
 - Streaming analytics

FUNDING

